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Normal-form methods for solving nonlinear differential equations are reviewed and the comparative
merits of three methods are evaluated. The method of minimal normal forms is then extended to apply
to the evaluation of discrete maps of an accelerator or storage ring. Such an extension, as suggested in
this paper, is more suited for accelerator-based applications than a formulation utilizing continuous

differential equations.

A computer code has been generated to implement systematically various

normal-form formulations for maps in two-dimensional phase space. Specific examples of quadratic and
cubic nonlinear fields were used and solved by the method developed. The minimal normal-form method
shown here gives good results using relatively-low-order expansions.

PACS number(s): 41.85.—p, 29.27.Bd, 29.20.Dh

I. INTRODUCTION

It is relatively easy and straightforward to find solu-
tions of accelerator lattice design for a linear system [1].
Once the nonlinear elements are introduced, no preferred
method has been found. Lately, one-turn maps [2] have
been suggested as a useful tool for embodying all pertur-
bations in an accelerator and hence a testing bed for
evaluating the comparative merits of various approaches.
A good one-turn map representation of an accelerator
can provide all necessary information for the lattice
description and hopefully also facilitate the evaluation of
the short-term stability and dynamic aperture of the ac-
celerator or storage ring.

Motivated by the successful and apparently superior
performance of the method of minimal normal forms [3]
in solving ordinary nonlinear differential equations, this
report is a first attempt to apply the same method to the
evaluation of maps suitable for accelerator design. A
good general discussion of normal forms is given in Ref.
[4]. An example of the application of normal-form tech-
niques, for the (large hadron collider) (LHC) at CERN
(but not using minimal normal forms), is given in Ref. [5],
demonstrating the usefulness of normal forms. The
method of averaging [6] is also broadly similar in spirit to
the techniques discussed in this paper. Our goal is to find
a rapidly convergent method that can provide basic reli-
able particle behavior and lattice information in a few
terms.

In this context, normal-form methods for solving
differential equations are first reviewed briefly and evi-
dence of the superiority of the minimal normal-form
(MNF) approach is demonstrated. Then the methods are
extended to the evaluation of one-turn maps for accelera-
tors. Both analytical and numerical methods of calculat-
ing the free functions in the normal-form transformations
are presented and applied to quadratic, cubic, and com-
bined perturbations. Unfortunately, the superiority of
the MNF method is not self-evident for the evaluation of
maps. The underlying reasons for the average perfor-
mance will be investigated and methods for improve-
ments explored in a future study.
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II. REVIEW OF FORMALISM

A. Formulation of method for differential equations

The minimal normal-form method as applied to
differential equations will be introduced below. This will
also serve the purpose of defining some notations and pre-
paring the groundwork for an extension of the method to
treat discrete maps. The notation follows that of Ref. [3],
which also gives a description of the method. However,
their presentation (which treats only differential equa-
tions) is not cast in a form directly useful to the develop-
ment below.

Consider a dynamical system describable by a canoni-
cally conjugate (coordinate, momentum) pair (x,p), with
z=x +ip, which executes a harmonic oscillation with a
nonlinear autonomous perturbation

i=—ipz+ 3 €Z,(z,z*),
k=1

(2.1)

where the frequency is u, € is the small parameter of the
perturbation expansion, and the Z; are homogeneous po-
lynomials of degree k +1 in z and z*, given by

Z,= 3

(p+g=k+1)

Z,,2P2%7 . 2.2)

The above equation is now solved by the use of a near-
identity transformation to a normal-form variable u via

z=u+ 3 eTi(u,u*), (2.3)
k=1
with homogeneous polynomials
T, = T, ufu *q (2.4)

(ptg=k+1)

which are to be determined. Let the resulting equation of

motion for u be expressed as
u=—iQu,u*)u , (2.5)

where it is anticipated that the motion of u will be a rota-
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tion in phase space. To make u a normal-form variable,
in which case Eq. (2.3) is called a normalizing transfor-
mation, the functions T} are chosen so that Q will be a
function of uu * only,

u=—iQMuu*)u ,

(2.6)
Q=p+i S e Uy (uu*)* .
k

The solution for u will have the form u =pe ¥, where p
is constant and

Y=1+Q(p) . 2.7
This prescription uniquely determines all of the
coefficients T, except those for which p =g +1, i.e., the

coefficients of u(uu*), p=1,2,... . In other words, the
above prescription insures that the motion of u is an
amplitude-dependent phase-space rotation, which is the
well-known behavior of normal forms, but it does not fix
the values of the tune-shift coefficients U,, (tune being
the dimensionless frequency). The coefficients T, ,; , will
be called “free terms” or ““free functions.” An extra cri-
terion is required to fix them, which will also set the
values of the tune-shift terms.

It is at this point that the various methods of calculat-
ing normal forms differ from each other. The “simplest”
choice is to put all the free functions to zero. This will fix
the terms U,;, in Eq. (2.6) uniquely, and yield a well-
defined infinite series of amplitude-dependent frequency
shifts. However, it is not necessary to set the free func-
tions to zero. The relation between the Poisson brackets
[z,z*] and [u,u*] is of the form

[z,z*]=[u,u*] {1+ 3 e*Py (uu*)* |, (2.8)
k=0

where the P,; obviously depend on the coefficients T,y
Choosing the free functions to cancel all the P,;, makes
the near-identity transformation in Eq. (2.3) a canonical
transformation. This requires nonzero values for the free
functions; it also leads to different values for the
amplitude-dependent frequency-shift terms U,, in Eq.
(2.6). The choice of canonical transformations is often
automatic in the accelerator-physics literature, since
there is a well-developed theory of such transformations,
e.g., the use of generating functions. The present formu-
lation displays the range of some of the other alternatives
available for obtaining normal forms.

In this context, the minimal normal-form method pro-
vides another prescription for choosing the values of the
free functions. Instead of cancelling the Poisson-bracket
terms P,,, one chooses the free functions to cancel out
the tune-shift corrections, the U,.’s. In practice, one
finds that the free term of order 2k, viz., T} . x, can be
used to cancel the tune-shift term of order 2k +2, U,; .
The first term Uz thus cannot be canceled, which there-
fore leaves

u=—ipu+eU,uu*?. (2.9)

Hence the minimal normal-form method also leads to
nonzero values for the free functions, but reduces the

infinite series of higher-order corrections to the normal
form to only one term: This explains the name
“minimal” normal form. The resulting transformation
from the original coordinates to the normal form is not
canonical. It will be shown below, for various models,
that the normalizing transformation in Eq. (2.3) con-
verges much more rapidly if one uses the minimal normal
form rather than a canonical transformation, or the “free
function equal to zero” choice.

B. Treatment of discrete maps

The method of minimal normal forms will now be ex-
tended to treat discrete maps, as opposed to differential
equations as in the previously published literature [3]. As
explained above, such a reformulation is more suited to
accelerator-based applications. Only a two-dimensional
phase space will be treated here. We again define
z=x +ip, where (x,p) is the coordinate-momentum pair,
and suppose that the map equation relating one turn to
the next is

z,11=Az, + 3 €Z,(z,,2}), (2.10)
k=1

where n is the turn number, A=e ~'¥, and the Z, are
again homogeneous polynomials of degree k +1 in z and

z*:

zZ, = Z,,zPz*7 . (2.11)
ptg=k+1

The near-identity transformation to the normal-form

variable u is given by

z=u+ 3 €T (u,u*),
k=1

(2.12)

with homogeneous polynomials T, of degree k+1 in u
and u*:

T,= > T, ufu*?.
(ptg=k+1)

(2.13)

This form of the near-identity transformation is essential-
ly the same as that of Scandale, Schmidt, and Todesco
[5], who express the homogeneous polynomials as @,
(summing over s), rather than T} (summing over k). As
in Ref. [5], we consider only the nonresonant normal
form in this paper. Unlike them, we aim to terminate the
tune-shift corrections at a finite order. Analogous to the
case of differential equations, the T,, are chosen so that

pq
the map for u# will have the general form

—iQ(unun*)

o0
— — 2k 77 *\k
U, 1=e u,=u A |1+ 3 e Uy u,uy) |,
k=1

(2.14)

where () consists of a sum of amplitude-dependent tune
shifts and the minimal normal-form procedure is to
choose the free functions to terminate the series for { at
a finite order. Unlike the case with differential equations,
however, the terms in Q are not simply the U,;; hence,
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one cannot terminate the series for the tune shifts in by
setting the U, to zero beyond O(€?). Instead, the free
function T} . is chosen so that U, /A=(UT,/A)*/k!.
This then yields the map

Ok
e | Uy
U,  1=Au, 1+2k"ﬂ % (uu*)*
=Au,exp[eX( U, /Muu*], (2.15)
Q=p+ieXU,/A)p?, (2.16)

i.e., a single higher-order exponent. The solution for u,

. . J .
is again pe ", where p is constant and

Yy =t +nQ(p?) .

This is our generalization of Eq. (2.9) of the minimal
normal-form condition as applied to maps. As in the case
of differential equations, setting all the free functions to
zero would require less effort in calculating the T,

(2.17)

coefficients, but would yield an infinite series of
amplitude-dependent tune-shift corrections:
Q=p+eu'p*+etup*+ -+, (2.18)

while a canonical transformation would yield both
nonzero free functions and an infinite series of
amplitude-dependent tune-shift corrections.

An obvious question is whether or not there is enough
freedom to choose the free functions to cancel the
higher-order tune-shift terms to obtain the minimal nor-
mal form as described above. An elegant proof of the ex-
istence of the minimal normal form has been supplied by
Forest [7], using map-based techniques and the Dragt-
Finn notation [8,9]. The proof therefore also applies au-
tomatically to differential equations. First, the original
map is expressed in the form

zy 41 =Mz, . (2.19)

Using canonical transformations, the map 1 can be
brought to normal form, say, N, via a transformation A :

M=A"NA . (2.20)

It is well known that this normalization can be carried
out, in a sufficiently small domain around the origin, for
an origin-preserving map. There is some freedom in
choosing A, which can be explicitly expressed by noting
that one can put A —N;A, where N, is an arbitrary
amplitude-dependent rotation map, and

M=A"WTINNA 2.21)

because {N,N;}=0 by definition. The map N is an

amplitude-dependent rotation, viz.,
J

N= [: —u(IHdJ": | 222

exp f o u(J") (2.22)

where the colons indicate the Poisson-bracket operator,
using Dragt-Finn notation [8],

fg=1{f.g},

and J is the invariant action, and J =p?/2 for a canonical

(2.23)

transformation. The tune shift has the form

w)=p+2u'J+TW) , (2.24)

where I'(J) is a shorthand for all the higher-order terms,
and we have put €é=1 in this derivation, without loss of
generality. To convert the map to minimal normal form,
we define

Imne=J +TW)/(2p') . (2.25)
The tune-shift then becomes
u(Imnp) =1+ 20" I uNE > (2.26)

i.e., a finite sum. Since Jyr is a near-identity Taylor ex-
pansion in J, it can be inverted (at least in a domain close
to the origin), so that one can express J as a function of
JumnE> and thereby obtain a map B=B(J yng, ), Where 9
is the angle variable, and write

M=B " WyneB - (2.27)

The map B is the normalizing transformation of the
minimal normal form, and Nyyg is the corresponding
normalized map. Hence, starting from W, obtained using
canonical transformations, one can prove that the
minimal normal form ANy exists, and one can also
derive the relationship between the invariant actions J
and Jynr of the two maps.

However, the above technique, if used to calculate the
minimal normal form, requires that we first normalize the
map using canonical transformations and then transform
it further to the minimal normal form. The procedure
outlined at the beginning of this section offers a method
to calculate the minimal normal form directly, and so it
will be employed below, in this paper.

It is not, at the present time, immediately obvious how
to generalize the minimal normal form to higher phase-
space dimensions. The difficulty arises because the tune-
shift for u,, say, depends on both J, and J,, and so one
cannot express J, ynr purely in terms of J,, because J), is
necessarily involved. It has therefore been suggested [7]
that the minimal normal form does not exist in higher
phase-space dimensions. We believe that this is not
necessarily the case, but rather that some further
refinement of the concept may be required to generalize
to more than two phase-space dimensions, possibly fol-
lowing the method of averaging described in Ref. [6] and
utilizing the “multiple-phase” technique referred to in
Ref. [10]. However, this is beyond the scope of the
present paper.

C. Explicit solution for coefficients

The above rather terse description explains the basic
aims of the minimal normal-form method, as applied to
the evaluation of maps, and the sense in which it is
“minimal.” To elucidate the above concepts, (1) the ex-
plicit details of the calculation of the coefficients T}, of
the near-identity transformation, and also the amplitude-
dependent tune-shift parameter u', will now be given and
(2) a worked example, viz., the Hénon map, will be treat-
ed below. A computer program has also been generated
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to implement the general formalism in two dimensions of
phase space, and will be used later in this paper to study
a few model examples which are more typical in accelera-
tor applications.

The procedure is as follows: First, Egs. (2.12) and
(2.13) are substituted into Eq. (2.10), and terms collected
in powers of €, to obtain

k *
Uyt X €T Uy uyyy)
k

=A|u,+ 3 Tilu,,uf) |+ 3 N (u,u*),
3 k

(2.28)

with new homogeneous polynomials

Ny= >

(ptg=k+1)

N,lp.q) , (2.29)

with the notation |p,q ) =u”u*? This can be performed
quite easily by a computer. We then put
U, 11 =Aujexp(—i€’u'u,uy) , (2.30)

where u’'=iU, /A, whence

> ekTPq(Af’_q—Mlp,q>
(pHg=k+1)

= 2

(ptg=k+1)

k
€N, Ip.q)

- 3 T,
(p+q=k+1)
(rz1)

—rq—r

e (r’j_q)] pg) . (2.31)

It is now apparent why the coefficients T,,, with
p=q +1, cannot be determined by this procedure alone:
their coefficient on the left-hand side (lhs) vanishes, since
AP 79— A =0 for such terms. Hence this leaves resonant
monimials |[p+1,p ) on the right-hand side (rhs), i.e., the
coefficients U - The solution for qu, except for the free

terms, is thus

-1
TPq_ kp-—q_x
X |Npg—AP71 Ty—rg—r
r(z1
e _ r
x = =)' | g 3
r!
and the tune-shift coefficients are given by
. _ (__l- ')r
Up=Nisixi—A 3 Tigropo—b"— . (233

r(z1 r!

It is understood that the sum over r terminates when the
indices reach zero or negative values. Formally, all such

T,_,,—, are set to zero. The free functions are deter-
mined by requiring that the terms in the series expansion
for the equation for u, , add up to a single complex ex-
ponential exp( —i€*u'u,uy).

We note the following caveat: if the O(e?) tune shift
vanishes, so that the lowest-order nonzero tune shift is
—ie*u"(u,u)?, then the free functions should be chosen
so that the equation for u, has the form

U, 41 =Au,exp(—ietu"uur?) . (2.34)
The formalism to handle this situation will not be
developed in detail in this paper, but should be included
in a more complete development of the minimal normal-
form method. A numerical example will be studied
below to indicate the consequences of a vanishing, or
small, O(€?) tune shift parameter.

D. Hénon map

To clarify the above abstract formulas, we shall now
work through an example with a simple but nontrivial
nonlinearity, viz., the Hénon map [11],

X X

p

cosu sinu
—sinp cosp

n+1

(2.35)

p +ex?

n

The notation has already been defined above. In terms of
z=x+ip and A=e " '#, the equation for the map is

2, +1=Az, +%(z,, 20 (2.36)

To O(e), the near-identity transformation to the normal-
form variable u is only z ~u +€T; hence,

*
Uy 1€l (uy Uy 41)

ieA .

=Mu+eT (uy,u) ]+ =~ (u, +u 2. (37

To this order of approximation, one can put u, ;=Au,
in the argument of T'; on the lhs, which yields

U, 1 =Au, +€[Too(A—AHu2+ T (A—1Du,ut

Ty (A=A 2)u*2]+ 1 () fyxy2
(2.38)

Equating terms of O(¢€) yields the solutions
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o= 1 z~u-+€T,+€*T,. This yields the relation
2 4r-1
i u +€*T,(Au, ,A*u*)
Tll——_é_}\’}\’_l, (2.39) n+1 2 n n .
. e =Au+€eT,(u,,u¥)]+ lezk(un-i-u,;")(Tl-i—T’l") .
02T T 3
421 (2.40)
The equation of motion for u, will thus have no term of
O(e), ie, u,,,=Au,+O(€*). At the next order, Collecting together the terms up to O(€?),
J
U, 1 FELP =M Tyud+(A— ATy uu* +(A* — M) Tuu*?+H(A*3—A)Tou*?]
;2
=Au, + ’627“[u3(T20+T32)+u2u*(T“+T;‘1+T20+T32)
Fuu*H T+ Tl + Ty +TH) +u* (T +TH)] . (2.41)

This determines T3, T,, and T3, but not T,;, because
its coefficient vanishes, and the term in u2u* cannot be
eliminated on the rhs: it contributes to U, or —iu’. The
expression for U, is, from above,

l72=i§i(T“+T;‘1 +Ty+TE), (2.42)
and so the tune-shift parameter is given by
O i 1 A 1 ax
== T Py
A 2 2 A—1 2 A*—1
*3
+l 1 1 A
4 A—1 4 A*3—1
© 933 2
_ i 2+ 3A°+3A+2 ' (2.43)
8 A—1

We notice that the rhs diverges if A=1 or eti27/3 je., the
well-known integer and third-integer resonances. The
denominator of the next term in the tune shift will con-
tain A>—1, etc. Using the property A*=1/A, it is
straightforward to verify that u’ is real. The next term in
the normal-form equation of motion is

iA
U4=‘2—[T22+T;2+T31 +T1

H(Ty+THN T +T35)
H(Ty+TH ATy +TT)

H( T+ T3 N T+ Th)+2u'Ty ] (2.44)
The derivation of the above result involves some tedious
algebra, and is best handled by computer. The interested
reader can consult Ref. [12]. As stated above, the as-yet-
undetermined free function T',, appears in the expression
for U,, so it is now set by requiring that T, /A= —pu'?/2.
At higher orders, T, _; is set by requiring that U,; /A
equal (—iu')k/k!, for k=2,3,4,....

The implementation of the above calculations, for arbi-
trary maps, has been incorporated into a computer pro-

gram, which will be used below to study various model
systems. The program in fact employs a rudimentary
version of the powerful differential algebra techniques
[13], although such a fact is not relevant for our purposes
here. A later paper will describe a fuller coupling of the
present work with a differential algebra package.

III. NUMERICAL RESULTS

A. Differential equations

Although we are principally concerned with the study
of discrete maps, our investigation of numerical models
will commence by applying the minimal normal-form
method to differential equations. There are various
reasons for this, one of which is that first integrals of the
motion (the energy, in particular) exist for the latter.
Hence, one has an easily identifiable criterion for an error
analysis, to check the accuracy of the various approxima-
tions to the exact solution. We select for study two well-
known equations, viz., a quadratic and a cubic nonlinear-
ity (Duffing oscillator), i.e.,

z'=—i‘uz+%(z+z*)2 (3.1)
and

i€2 3
z'=—i,uz+—§~(z+z*) s (3.2)
and then the sum and difference of the two perturbations,
i.e.,

. .2
z'=—iuz+§(z+z*)2i%(z+z*>3. (3.3)

We may set u=1 without loss of generality. The phase-
space trajectories for the first two equations of motion
above are shown in Fig. 1. The domain of stable orbits
around the origin are clearly identifiable. The above
graphs have been plotted using e=1; the value of € mere-
ly determines the location of the separatrix, and has been
chosen so that z; =1 is a fixed point in both cases.
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FIG. 1. Phase-space trajectories for a cubic nonlinearity
(Duffing oscillator) on the left, and a quadratic nonlinearity on
the right, calculated using a symplectic integrator.

The solution for the coefficients T, in the normal-form
transformation, in the case of differential equations, is al-
most the same as that for maps, and a derivation very
similar to that of Eq. (2.32) yields

i
= p—g— 1
The free terms, for which p =q+1, are set by requiring
that the U,; vanish for k =2 in Eq. (2.6), in the case of
the minimal normal form, or by requiring that P,;, =0 for
k =1, in the case of a canonical transformation.

Equation (3.2) will be treated first, because the calcula-
tions of the amplitude-dependent tune shift, etc., are
simpler for a cubic rather than a quadratic nonlinearity.
Three methods of solution were used: (1) set all free func-
tions to zero (the “F=0" choice), (2) a canonical trans-
formation (denoted CT below), and (3) the minimal nor-
mal form (denoted MNF). For this perturbation, the
O(€?) tune-shift parameter can be read off immediately
and is

u=—23 (3.5)

8

[Npq+l(p —q)H'ITp-lq—l] . (3.4)

for all of the above methods. It is only at higher orders
that the tune-shift parameters, etc., differ among the
methods.

To examine the convergence of the series expansions of
the various methods above, D’Alembert’s test of conver-
gence [14] suggests that we plot the magnitudes of the
kth-order terms |T}|, or log,olT«|, as a function of k.
Since T is actually a polynomial with several terms, the
function actually plotted was

> Ty

itj=k+1

logyo

b

i.e., the sum of the magnitudes of the coefficients of the
individual terms in each Tj. The results are shown in
Fig. 2, where the curves corresponding to the various
choices are labeled F =0, CT, or MNF, respectively. It is
striking that the coefficients from the first two methods
(F=0 and CT) do not decrease with the order at all,
whereas those calculated using the MNF method de-
crease rapidly. This is equivalent to saying that the
minimal normal form achieves, at low orders of perturba-
tion theory, a better approximation to the exact solution,
thus requiring smaller higher-order corrections.

0'7\7|IITIITT[ T T 1|l"|1'
71—— p—
= i \n 1
= L B -
\Lﬁ:’
bgb . -
[}
g L o |
L TS MNF |
-
r, \\ -
P IS I N BRI B S
[0} 2 4 6 8 10 12
k

FIG. 2. Graph of the magnitudes of the coefficients in the
normal-form transformation as a function of the order of per-
turbation theory, for various methods of choosing the free func-
tions for a Duffing oscillator. MNF denotes minimum normal
form and CT denotes canonical transformation methods.

Other relevant functions to examine and compare
among the methods are the free functions T} ,;, the
tune-shift coefficients U,;, and the Poisson bracket
coefficients P,,. Table I offers a comparison of the values
of these coefficients. For the F=0 choice, the values of
U, /A and P,, are tabulated. The free functions are
omitted, since they are all zero. For the CT, the values of
Ty +1x and U,, /A are presented, while for the MNF, the
values of Ty ,, and P, are given. It is evident that for
both the F =0 and the CT methods, the values of the tab-
ulated coefficients initially decrease slightly, but soon
turn around and start to increase with the order, e.g., the
tune-shift corrections U,; /A. The MNF method, on the
other hand, yields terms that decrease rapidly with the
order.

An important test of the accuracy of the various per-
turbative solutions is to compute the value of the energy.
Since the equation of motion is autonomous, the energy
should remain constant as a function of time. In general,
the value of any first integral of the motion should be
computed and checked for constancy as a function of
time. For the Duffing oscillator of Eq. (3.2), the energy is

ex*t

4

In our analysis, p=€=1. The amplitude was set at
p=0.5, so as to be well within the separatrix, so that all
the methods would converge rapidly. For each method,
the calculations were performed to O(e*) and O(€®), i.e.,
the near-identity transformation to the normal form was
calculated through T, or T, respectively, and the tune
shifts were also calculated through O(€e*) or O(e®), for
the F=0 and CT cases. For the MNF, the tune shift ter-
minated at O(€?), of course. The value of the relative er-
ror (E —E,)/E,, where E is the initial energy, is plotted
against the time in Fig. 3. A total of six curves are shown
and labeled, viz., dashes for the MNF, solid for the CT,

E=‘%(p2+x2)— (3.6)
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TABLE 1. Values of the free functions, tune-shift coefficients, and Poisson-bracket coefficients for
the various methods of calculating the normal form for a map with a thin-lens octupole.

Zero-free functions

Canonical transformation

Minimal normal form

k Upe /0 Py Tyt 1k Up /A Ty 1k P

1 0.375 0 0 0.375 —0.265 625 —1.0625

2 0.1992 —0.0791 0.0131 0.1992 0.015991 0.228 515
3 0.1732 —0.1296 0.0162 0.1831 0.001272 0.014 648
4 0.1812 —0.1844 0.0194 0.2038 0.000 169 0.007 305
5 0.2092 —0.2535 0.0239 0.2504 —0.000031 0.002941
6 0.2570 —0.3447 0.0303 0.3267 —0.000 046 0.000 860

and crosses for the F =0 choice. The results for the F=0
and CT methods are very similar, but that for the MNF
method is quite clearly better than both. Even at O(e*),
the MNF yields an error comparable to that from the
others at O(e%), while when the MNF is used to O(ef),
the error is almost invisible on the scale of Fig. 3.

On the above evidence, the minimal normal form ap-
pears to be a good choice when utilizing the freedom in
setting up the near-identity transformation to the normal
form, but more evidence is required, using other equa-
tions of motion. The next model treated was Eq. (3.1),
which has a quadratic nonlinearity. For this equation,
two orders of perturbation theory are required to derive
the amplitude-dependent tune shift, and the coefficient is

e 5

12u
As explained above, this value is the same for all three
formalisms. Analogous to Table I, the values of the free
functions T, the tune-shift coefficients U,; /A, and
the Poisson-bracket coefficients P,, are listed in Table II.
The results are, if anything, even more impressive than
those for the Duffing oscillator. Indeed, both the F=0
and CT methods yielded coefficients T;; whose magni-
tudes increased with the order k, while the MNF yields

(3.7
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FIG. 3. Graph of the relative error (E —E,)/E, in the ener-
gy as a function of time, for calculations through fourth and
sixth order, for various methods of performing the normal-form
transformation. The equation of motion contains a cubic non-
linear term.

terms that decreased. A graph of the magnitudes of the
coefficients

> Tyl

i+j=k+1

logyo

as a function of the order k also confirmed that the MNF
coefficients are several orders of magnitude smaller than
those from the other methods.

However, there are cases where the use of the minimal
normal form as described above is not so effective. Note,
from Eq. (2.25), that if y’ is small, or vanishes, then the
minimal normal form does not exist. In the present for-
malism, the free functions would diverge when attempt-
ing to cancel out the tune-shift terms. For example, for
the potential

2.4
=—%ex3+-e—4)-c— : (3.8)
with p=e=1, the tune-shift parameter is u’'=~—0.009,
i.e., almost zero. The corresponding graph to Fig. 2\was
plotted, in Fig. 4. The MNF coefficients, this time, were
larger than those from the F=0 and CT methods, which
were not directly dependent on the value of y'.

There is, however, a “cure” for this problem. Recall
that it was pointed out above that if u’ =0, then the MNF
prescription should be modified to retain the O(e* tune-
shift parameter u'’, and to use the free functions to cancel
the higher-order tune-shift terms, i.e., to use T,; to can-
cel Ug, and T, to cancel Ug, etc. Using the free func-
tions in this way, i.e., keeping both u’ and p'’ nonzero,
and going up four orders to set the value of each free
function, the minimal normal-form method was applied
to the above potential again. The values of the higher-
order tune-shift parameters were actually not zero, but
small, because the full implementation of the MNF
prescription for this situation required the solution of
quadratic equations; hence, the free functions were only
set approximately. More detailed results, using a more
sophisticated computer program, will be presented else-
where. The values of the two lowest-order tune-shift pa-
rameters were p'~—0.009 and p''~0.533, i.e., u”’ was
not close to zero. The magnitudes of the coefficients in
the series expansion are shown in Fig. 5, together with
the previously derived solutions for the F=0 and CT
methods, which are unchanged from Fig. 4. The MNF
coefficients are now an order of magnitude smaller than
those from the F =0 and CT methods, instead of eight or-
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TABLE II. Values of the free functions, tune-shift coefficients, and Poisson-bracket coefficients for
the various methods of calculating the normal form for a map with a thin-lens sextupole.

Zero-free functions

Canonical transformation

Minimal normal form

k Uy /A Py Ty 1k Uai /A Tyt 1k Py

1 0.4166 0.2222 —0.0555 0.4166 —0.545138 —1.958333
2 0.4542 0.5666 —0.0836 0.4079 0.092 562 1.286 747
3 0.7896 1.6911 —0.1669 0.6202 —0.012415 —0.326 260
4 1.6569 5.1819 —0.3599 1.1148 —0.004 003 0.044 213
5 3.8537 16.0340 —0.8056 2.1898 —0.001471 0.000 397
6 9.5641 49.9176 —1.8464 4.5448 —0.000 344 —0.002 380

ders of magnitude larger, as in Fig. 4. The improvement
in the MNF results is dramatic.

Hence, we may conclude that the minimal normal form
has the potential to be a good method of exploiting the
freedom available in the transformation from the original
phase-space coordinates to the normal form. It holds out
the promise of offering a good approximation to the exact
solution using only low orders of perturbation theory,
thereby requiring smaller higher-order corrections than
other methods such as a canonical transformation. How-
ever, it was also shown that the basic implementation of
the method, as described in this paper, could yield worse
results than other methods, if the magnitude of the
lowest-order tune-shift parameter u#’ was small, or zero.
In that case, it was shown that the appropriate step was
to retain higher-order tune-shift parameters, e.g., u'’, in
the equation of motion for the normal form. The
minimal normal-form method then again yielded better
results than the other methods studied in the tests above.
Hence, some judgment is required by the user as to how
many tune-shift coefficients should be retained to nonzero
values before using the free functions to cancel the rest.
The merit of the minimal normal-form method for
discrete maps will now be investigated.
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FIG. 4. Graph of the magnitudes of the coefficients in the
normal-form transformation as a function of the order of per-
turbation theory, with quadratic and cubic nonlinear terms
chosen so as to yield a small second-order tune-shift parameter.

B. Discrete maps

The calculations of the expressions for the normal form
for discrete maps are similar to those for differential
equations, but there is no longer an easily identifiable first
integral of the motion, to provide a convenient basis for
an error analysis. Hence, the analysis below will be re-
stricted to an examination of the behavior of the growth
of the magnitudes of the coefficients in the transforma-
tion to the normal form, as a function of the order of per-
turbation theory. The three choices for the normal form
will again be denoted F=0, CT, and MNF. The maps
treated below used a single thin-lens sextupole or octu-
pole, i.e., a quadratic or cubic nonlinearity. A plot of the
phase-space trajectories for these maps is shown in Fig. 6.
The tunes were set to v=0.255 and 0.34, respectively,
where p=2mv, and the value of € was chosen so that the
separatrices would be at x2+p2=1 in both cases. This
leads to the choices €=0.2 and 0.1, respectively. For the
octupole, the map equation is

ie2\
8

The sextupole map would normally be very similar,

Z, 1 1=Az, + (z,+zF)?. (3.9)

2|1x|||‘{vrr|||1| i

il)

1

log1o(Z|T
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FIG. 5. Graph of the magnitudes of the coefficients in the
normal-form transformation as a function of the order of per-
turbation theory. Both the second- and fourth-order tune-shift
parameters were retained in the minimal normal-form method.
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FIG. 6. Phase-space trajectories for maps with a thin-lens oc-
tupole (left) and sextupole (right). The tunes are labeled in each
figure. The nonlinear multipole strength is chosen to place the
separatrix at x2+p2=1 in each case.

ieh
z,,+1=}»z,,+~——4 (z,+z*)?, (3.10)
i.e., the Hénon map. For aesthetic reasons, however, to
create phase-space trajectories symmetric around the x
axis, the sextupole was located diametrically opposite the
observation point, leading to the map equation

ieVa
4

which was used to generate Fig. 6. It has been verified
that the location of the sextupole made no difference to
the convergence of the series expansion for the normal
form. The values of the O(€?) tune-shift parameter are

Zp 1 =Mz, + (VAz, +VA*z*)?,

(3.11)

p=—3, (3.12)
for the thin-lens octupole kick in Eq. (3.9), and
Y 2
,u,’=i 2A°+3A°+3A+2 ’ (3.13)

8 Ad—1

for the thin-lens sextupole kick in Eq. (3.11), i.e., the
same as the Hénon map.

As explained above, in accordance with D’Alembert’s
test of convergence [14], the various methods for calcu-
lating the normal form were compared by plotting the
function

2 |T'ijl

i+j=k+1

logyo

against the order k. The results for the thin-lens octupole
map, Eq. (3.9), with a tune of v=0.255, are shown in Fig.
7. The results from all three methods are almost the
same, and although the MNF result is smaller than the
others, the difference is slight. It is not immediately clear
why this is so; perhaps it may be due to the presence of a
small denominator in the coefficients, caused by the loca-
tion of large low-order resonance islands close to the ori-
gin. In an attempt to approximate the conditions of the
differential equations, the calculation was repeated using
a tune of v=0.01, i.e., a small phase advance per turn.
The results are shown in Fig. 8. The MNF result, this
time, is distinctly better than the others, the coefficients
being smaller by two orders of magnitude at the tenth or-
der.
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FIG. 7. Graph of the magnitudes of the coefficients in the
normal-form transformation as a function of the order of per-
turbation theory, for various methods of choosing the free func-
tions, for a map with a single thin-lens octupole, using a tune of
v=0.255.

To examine the behavior for a different map, the thin-
lens sextupole map of Eq. (3.11) was studied next. The
results are shown in Fig. 9, for a tune of v=0.34. This
time, the MNF coefficients for the normal form are clear-
ly smaller than those from the F=0 and CT methods.
Use of a combined sextupole-octupole kick, viz.,

i€2A

Z,+1=Az, +‘—ffi(z,, +2 P+ (2, 422 ),

(3.14)

with a tune of v=0.255, again yielded results which were
almost the same for all three methods.

A lattice of thin-lens focusing-defocusing (FODO) cells
was now constructed, to provide an example of a model
closer to actual accelerator applications. A block dia-
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FIG. 8. Graph of the magnitudes of the coefficients in the
normal-form transformation as a function of the order of per-
turbation theory, for various methods of choosing the free func-
tions, for a map with a single thin-lens octupole. The small-
amplitude tune is v=0.01.
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FIG. 9. Graph of the magnitudes of the coefficients in the
normal-form transformation as a function of the order of per-
turbation theory, for various methods of choosing the free func-
tions, for a map with a single thin-lens sextupole. The small-
amplitude tune is v=0.34.

gram of one cell is shown in Fig. 10. The cell half-length
was / =4.2 m, and the quadrupole inverse focal lengths
were k,=—k,;=0.28 m~ !, leading to a betatron phase
advance of approximately 72 ° across the cell. The above
parameter values are based on those of the AGS Booster
at Brookhaven National Laboratory [15] (BNL), which
has 24 cells and an operating tune of between 4.8 and 5.
The origin and end of the cell were located at the center
of a focusing quadrupole to make the end points symme-
try points of the lattice. The sextupole kicks were given
by Ax'=—es; x?% with s,=—s,=0.05 m™ 2 A com-
puter program was used to calculate the Taylor expan-
sion of the one-turn map around the phase-space origin,
and to diagonalize the linear motion, to yield a series in
the form Eq. (2.10). The amplitudes of the coefficients in
the normal-form transformation were plotted against the
order of the expansion in Fig. 11. The results from all
three methods are very similar. Note that, in all three
cases, the coefficients decreased in magnitude until a
small denominator was reached (because a tune of 4.8 is
close to a % resonance), after which the magnitudes in-
creased.

Hence, the minimal normal-form method, when ap-
plied to discrete maps, sometimes yields better results

SF SD

QF/2 QD QF/2

FIG. 10. Block diagram of thin-lens FODO cell with non-
linear elements (sextupoles) placed next to each quadrupole.

il)
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logio(z|T

FIG. 11. Graph of the magnitudes of the coefficients in the
normal-form transformation as a function of the order of per-
turbation theory, for a lattice of 24 thin-lens FODO cells with
two sextupoles per cell. The phase advance per cell is p=72".

than other methods, but the difference is not as pro-
nounced as when solving differential equations. In all of
the maps studied above, the free functions were chosen to
cancel the higher-order tune-shift coefficients beyond
O(€®). However, in those cases where the minimal
normal-form results were not better than those from oth-
er methods, it may be a good idea to retain both the
O(€?) and O(e*) tune-shift terms, and to use the free
functions to cancel the coefficients starting at O(e®),
based on the experience with differential equations above.
This requires a more sophisticated formalism and com-
puter program, because the equations to be solved are not
as straightforward. Future reports will address the re-
sults from such a prescription.

IV. CONCLUSION

The method of normal forms has been reviewed and
the superiority of the minimal normal-form method has
been demonstrated for ordinary nonlinear autonomous
differential equations. The minimal normal-form method
has also been extended to treat discrete maps. The appli-
cation to the evaluation of one-turn maps for accelerators
yields mixed results; hence, the superiority of the
minimal normal form is not as clearly visible. Further
studies in investigating the effect of small denominators
in the vicinity of low-order resonances will be attempted,
to improve the convergence of the perturbation expan-
sion. A differential algebra package of computer pro-
grams will be used to facilitate the numerical manipula-
tions necessary for the applications.

A major application of the method presented here in
the calculation of the one-turn map is to use the map to
evaluate the effect of nonlinear perturbations on the lat-
tice functions, such as betatron functions, the dispersion
function, chromaticity, and tunes of the accelerator. If
such improvements are proven to be possible, the
minimal normal-form method can serve as a standard
way of calculating lattice functions of an accelerator or
storage ring.
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